Exercise 48

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=5+54 x-2 x^{3}, \quad[0,4]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(5+54 x-2 x^{3}\right) \\
& =5(0)+54(1)-2\left(3 x^{2}\right) \\
& =54-6 x^{2}
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
54-6 x^{2}=0 \\
6 x^{2}=54 \\
x^{2}=9 \\
x= \pm 3
\end{gathered}
$$

$x=3$ is within $[0,4]$, so evaluate f here.

$$
f(3)=5+54(3)-2(3)^{3}=113 \quad \text { (absolute maximum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{array}{ll}
f(0)=5+54(0)-2(0)^{3}=5 & \text { (absolute minimum) } \\
f(4)=5+54(4)-2(4)^{3}=93 &
\end{array}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0,4]$.

The graph of the function below illustrates these results.

